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Abstract

This note outlines an interdisciplinary program in robust control for nonlinear systems with

applications to a variety of engineering problems. Major emphasis will be placed on flight

control, with both experimental and analytical studies.
This program builds on recent new results in control theory for stability, stabilization, robust

stability, robust performance, synthesis, and model reduction in a unified framework using Lin-

ear Fractional Transformations (LFTs), Linear Matrix Inequalities (LMIs), and the structured
singular value/_. Most of these new advances have been accomplished by the Caltech controls

group independently or in collaboration with researchers in other institutions. These recent re-

sults offer a new and remarkably unified framework for all aspects of robust control, but what is

particularly important for this program is that they also have important implications for system

identification and control of nonlinear systems. This combines well with Caltech's expertise in
nonlinear control theory, both in geometric methods and methods for systems with constraints
and saturations.
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1 Summary of proposed research

1.1 Introduction

In this note we outline a comprehensive research program in robust control for nonlinear system.

Our research in control theory will build on our recent progress in robust control, robust identifi-

cation, and nonlinear control. Our long-term goals are:

o

.

Develop robust control methods for nonlinear systems that integrate the entire controller

design process, including modeling and system identification, as well as online adaptation,

testing, evaluation, and redesign. Also, integrate the control design process more fully with

sensor, actuator, and plant design.

Apply developing robust control methods to application areas to motivate the theory and

provide contextl Experimental projects include flight control, combustion instabilities, com-

pressor surge, and several other control problems in mechanical and chemical process systems.

More speculative applications in control of vortex shedding from bluff bodies and configura-

tion and signal processing for microsensors are also being considered.

We are proposing an uncommonly synergistic relationship between control theory and applica-

tions, which we believe greatly benefits both. In addition to motivating the theory and providing

context for its development, the theory can often be advanced much more rapidly by first consid-

ering domain specific rather than general systems.

1.2 Robust control of nonlinear systems

One long term goal of this program is to integrate the entire controller design process, from modeling
and identification to analysis, simulation, and synthesis throught to implementation, including

online adaptation, testing, evaluation and redesign. A more systematic design procedure reduces

the design effort, broadens the applicability, improves the performance and, in general, makes the
affected industrial sectors more competitive. While recent developments in robust control theory

have had a very positive impact on analysis and synthesis of controllers, there remain substantial

portions of the total process which axe far from systematic. On one end of the design process, the

modeling for control design is as much art as science. On the other end, the design of the final

controller is often completed with substantial additional logic that is added in a completely ad hoc

manner.

Nonlinearities, constraints, and uncertainty

The greatest obstacles to practical application of advanced control theory have traditionally been

the presence of nonlinearities, operating constraints, and model uncertainty. Until the last decade

or so, modern and classical control theory addressed none of these issues in a satisfactory manner.

Since then, great research progress has been made in addressing these issues separately in a funda-

mental manner, but no method systematically addresss more than one. For example, robust control

has focused on the issue of model uncertainty, with tremendous success by almost any measure. So

far, the most successful applications of robust control techniques such as p analysis and synthesis

have occurred in problem domains (flexible structures, flight control, distillation) where there may

be substantial uncertainty in the available models, but the basic structure of the system is under-

stood, the uncertainty can be quantified, and the nonlinearities can be bounded and treated as



perturbations on a nominal linear model. The degrees of freedom and the dimension of the input,

output, and state may be extremely high. In such cases, direct intuition about control strategies is

almost useless, and the power of sophisticated synthesis methods based on advanced mathematics

is dramatically demonstrated.

Similarly, Model Predictive Control (MPC) has focused on control design for otherwise linear

systems with constraints and has found substantial applications, particularly in process control.

However, some operational requirements are impossible to express in the MPC fashion, i.e., through

a single objective function which is to be optimized on-line subject to a set of constraints. Also,

the scope of the available techniques for robust stability analysis is extremely limited. There

is no accepted definition of robust performance, even less a corresponding synthesis technique.

Furthermore, even linear MPC with linear constraints is computationally too complex to be used

for demanding high-speed applications like compressor surge control or aircraft turbine control. The

idea extends to nonlinear systems in principle, but we understand very little about its properties

and the computational problems are enormous.

Advances in nonlinear control theory have resulted in a much more detailed understanding

of the geometry of nonlinear control systems and the interaction between geometric properties

and control design. The primary emphasis in nonlinear control design has focused on mathematical

analysis and not engineering applications. Recent techniques in feedback linearization and dynamic

inversion have found use in some practical applications, but the limited class of systems to which

these methods apply leaves much room for research. There are currently no nonlinear design

tools which simultaneously take into account performance specifications, disturbance rejection, and

model uncertainty.

Unfortunately, nonlinearities, operating constraints, and model uncertainty often occur simulta-

neously, and thus many practical control applications fail to take advantage of theoretical advances

because they are dominated by combinations of these issues. Engineers address these issues with

domain-specific approaches that have evolved through trial and error, and simple schemes that rely

heavily on engineering intuition. It is thus not surprising that traditional schemes still dominate

the application world. For a PID controller, we know how to introduce anti-windup to preserve

stability and minimize performance deterioration in the event of manipulated variable saturation

and when controller switching is dictated by a selector. We also know quite well how to tune PID

controllers to be insensitive to process nonlinearities and model uncertainty, and we know when

simple nonlinear compensators are needed. Unfortunately, these simple, practical schemes for PID

controllers can be overwhelmed by complex, multivariable systems
There is an established industrial need for multivariable controllers which can deal with non-

linearities, constraints and uncertainty, which can be switched in and out as demanded by logic

elements, and which can be easily gain-scheduled, simulated, verified, and implemented. The new

muitivariable controller design techniques will not fulfill their promise unless the important issues

of process nonlinearity, constraint handling and model uncertainty are resolved. Our proposed pro-

gram will establish a sound theoretical basis for control design methodologies addressing all three
issues.

Modeling and system identification for control design

Another aspect of control design that remains far too unsystematic and which we are focusing

on is modeling and identification of uncertain dynamic systems from first principle models and

experimental data for the purpose of robust control. Recent advances in robust control allow

control system designers to replace ad hoc trial and error approaches for dealing with uncertainty
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with explicitand systematicanalyticalmethods, allowingforthe use ofmuch more realisticmodels

and performance objectives.The enormous flexibilityof thesemethods makes them very powerful,

but at the same time puts a new burden on the engineerto model and identifyuncertainties,both

from firstprinciplesand experimentaldata.

The technologytoproduce uncertaintydescriptionsofdynamical systemshas not keptpace with

the techniquesto analyze the resultingmodels, and thus modeling and identificationfor control

design continuesto involvesubstantialad hoc aspects. New robust controldesign techniques

actuallyrequiremore sophisticatedsoftwaresupport than ever before. When designershad few

choicesthere were few decisionsto make. With more powerful analyticaltoolsto dealwith more

complex models, uncertaintydescriptions,and multiplecompeting performance objectives,the

designercan be overwhelmed by the choices.We willpursue two approaches to narrowing these

choices:i) more directconnectionwith modeling and data and 2) more sophisticatedsoftwareto

manage the complex decisionmaking.

Beyond robust control

The controltheory portionof our proposed researchprogram buildson some excitingnew results

in stability,stabilization,robust stability,robustperformance,synthesis,and model reductionin

a unifiedframework using Linear FractionalTransformations(LFTs), Linear Matrix Inequalities

(LMI), and the structuredsingularvalue p. At the heartlofour approach to robust controlis

the observationthat multidimensionaland uncertainsystems are naturallywritten as LFTs, and

essentiallyallof the standard questionsinrobust controlare easilyand naturallyexpressedusing

LFTs. The proposed researchprogram willpursue thisLFT/LMI approach to robust controlas

wellas establishadditionalconnectionswith nonlinearcontroltheory.

Perhaps as important as the specificresultsthemselvesisthe technicalframework in which

they are developed. It offersa new and remarkably unifiedframework for allaspectsof robust

control,includinganalysis,synthesis,and model reduction. What isparticularlyimportant for

thisprogram isthat italsopromises to have important implicationsfor system identificationand

controlof nonlinearsystems. Remarkably, it alsogreatlystreamlinesthe development of even

the standard results,threateningto make the most recentconventionaltreatments of balanced

truncation,stabilization,and state-spaceHoo obsolete.

While theseresultsare only beginningto be appliedto any seriousengineeringproblems,their

potentialimpact isenormous. For example, the model reductionresultsare the firsttechniques

for producing reduced order models of uncertainsystems with guaranteed error bounds. The

generalizationsof the stabilizationand ]/_otheory should provide reliable,systematicmethods

for gain-schedulingrobust controllers.By the beginningof thisprogram we willhave preliminary

applicationexperienceto providesome engineeringperspectiveon the new results.An important

aspect of thisproposed program is the evaluationof these techniqueson severalexperimental

systems that are describein greaterdetaillater.

Adaptive control

From the point of view of the proposed research program, adaptive control is a scheme for designing

nonlinear controllers for uncertain systems. Essentially all successful practical adaptive controllers

have been designed by combining good system identification with good control design. Adaptive

control will naturally evolve in our research program from advances in robust system identification

and robust controller synthesis. We believe that this is the best possible research direction to

develop systematic methods for the design of practical adaptive control schemes.



Integrated controller/plant design

While we expect this research program to greatly advance design of robust controllers for nonlinear

systems, we see control design in a broader context. Increasingly, the role of the control engineer
is as much to determine sensor and actuator locations and evaluate the total system performance

as it is to design the control system per se. Indeed, in many applications the control engineer's

most important function is to help design the basic plant itself, not the actual control design. This

is one reason our proposed research program focuses exclusively on analytic methods, since both

heuristic-based (e.g. fuzzy logic) and black-box learning (e.g. neural net) methods for controller

design offer almost nothing in this setting. While these methods may have some role to play in

certain application areas, analytic techniques are always superior in situations where control design

must interact substantial with plant design, i
f

1.3 Flight control and related applications I

We are also developing several application areas to motivate and provide context for the theory.

The largest of these applications will consist of a sequence of experiments in flight control for rotary

and fixed wing aircraft. Other applications which are currently being developed, and which will

integrate with the research in this proposal, include control of combustion instabilities, control of

surge in high performance turbomachinery, control of flexible, articulated structures, and control

of vortex shedding in fluid flow processes, and control of various other mechanical and chemical

process systems. In each case, the Caltech control group will collaborate with specialists in the

application domains.

We plan to establish a directed program of research in design of robust flight control systems,

with application in the area of supermaneuverability of high performance jet aircraft. This phase

of the research is centered around case studies of the control of several increasingly complex flight

control systems: a tethered model helicopter, a vectored thrust engine, and a free-flying, fixed wing

aircraft, to be developed jointly with Rockwell, Inc. For this class of systems, the dynamics vary

substantially over the operating regions of interest, making use of nonlinear control techniques an

attractive possibility. A particular area of interest for flight control systems is in trajectory tracking,

especially for trajectories which do not lie in a single operating region and may not remain near an
equilibrium point of the system. !

Since these systems are extremely difficult to model exactly, disturbances and model mismatch

must be taken into account during the design process. Also, it is unlikely that a detailed description

of the complete system dynamics will be available. Hence numerical identification of some system

characteristics must be performed. Such identification procedures only give approximate descrip-

tions of the plant, and the effect of these approximations must be taken into account in order to

guarantee robust performance.

Other application areas in this program with experimental components included surge in high

performance turbomachinery and control of flexible articulated structures. More speculative appli-

cations in control of vortex shedding from bluff bodies and configuration and signal processing for
microsensors will also be considered.

OR!C=INAL P.._QE IS

OF POOR QUALITY



2 Robust Control of Nonlinear Systems
t

2.1 Outline of proposed research plan !

The basic outline of the proposed research program is diagrammed in Figures 1 and 2, divided

somewhat artificially into analysis and synthesis. In each case, the top row consists of results which

exist or are anticipated to be reasonably well-developed by the start of this program. The flow

diagrams then chart the expected evolution of the research program, with time roughly represented

by movement down the page. Of course, the plan gets increasingly speculative toward the bottom

of the diagram. For example, we have, somewhat tongue-in-cheek, highlighted Nonlinear Robust

Adaptive Control at the bottom of the synthesis diagram. We cannot honestly say at this time

that we have more than a vague idea about how a truly robust adaptive control theory would look,

but we are very confident that our proposed research program has the best chance among currently

available theoretical frameworks of getting there.

In many of the boxes indicating research topics there are section numbers listed where a sketch

of the key ideas can be found. The arrows indicate roughly the dependence of research topics on
results from other research topics. The dotted boxes in the synthesis diagram axe boxes from the

analysis diagram that are key to progress on the synthesis boxes to which they point.
The remainder of this section will review recent theoretical progress and outline proposed re-

search directions. Additional technical details on the recent results is available in the the references

cited. We will begin with a discussion of some generic research issues that effect each topic and

then move on to sketches of the individual topics and their relationship to each other.

2.1.1 Modeling and uncertainty

In the fieldofrobust control,thereare currentlyseveralmethodologieswhich enableone to synthe-

sizecontrollerswhich maintain theirstability/performancein the presenceof perturbations.The

number of papers at recentconferenceson Hoo and LI optimal controlas wellas the analysisof

realparametric uncertaintyatteststo the widespread interestin thisarea. Unfortunately there

arerelativelyfew experimentalor industrialapplicationsofsuch techniques.For example, while#-

analysismethods are now used routinelythroughoutthe aerospaceindustry,Hoo, LI, or # synthesis

methods are justbeginningto findsubstantialapplication.

While there are many reasonsfor thislackof applications,an important one isthe absence of

systematicmethods formodeling and identificationthatare compatiblewith robustcontrol.Thus,

while engineersmay be comfortabledoing what-ifanalysiswith variousuncertaintydescriptions,

they have no systematic way for obtainingthe weightingmatrices and uncertaintydescriptions

requiredforthe synthesistechniques.In contrast,analysisrequiresmuch lesssystematicmodeling

effort.Engineerscan trya varietyofuncertaintymodels and convincethemselvesthattheirdesigns

have reasonablerobustnesspropertieswithout committing themselvesto any specificuncertainty

model.

Most currentidentificationmethods attributeuncertaintyin the system to additivenoise.Ro-

bust controldesignmethods requirethat one account for both unknown (but bounded) dynamic

perturbationsas wellas additivenoise. Almost allexperimentalapplicationsof robust control

techniquesuse ad-hoc methods foridentifyinga model and itsassociateduncertainty.Obtaining

a descriptionof the uncertaintyisan essentialpartofmodeling an uncertainsystem, and thiswill

be a major emphasis ofthisresearchprogram.

Itisnow widely recognizedthatmuch betterconnectionsbetween modeling,data,and control

designand implementation are needed,as evidencedby the excitementgeneratedat the Workshop

6
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on the Modeling of Uncertaintyin Control Systems, sponsored by NSF and AFOSR, held inJune

1992. While there are certainlyintrinsiclimitationson the extentto which such connectionscan

be formalized,it is very likelythat substantialprogresscan be made. Severalresearchersare

beginning to look at thisbroad classof problems, but there isvery littlein the way of general

results. Equally important, there does not exista reasonable paradigm in which to pose the

relevantquestionscomparable to what has evolved in the areasof robust controlor conventional

system identification.A major goalofthisresearchprogram istofollowup on the June workshop in

developinga generalframework forconnectingmodeling from firstprinciples,system identification,

performance specification,and controldesign.

2.1.2 Robust Stabilityand Performance of LFT Systems

There are several notions of robust stability and performance that can be systematically treated

in an LFT framework [24]. The most developed now are those involving either L2 or Loo as the

underlying signal space for disturbances and performance specifications, as well as for inducing the

norms which bound perturbations. The use of L2 spaces leads to Hoo norms on systems, and Loo

leads to what has become known as the L1 theory. It is also possible to consider perturbations that

are from Linear and Time Invariant (LTI) to Nonlinear Time Varying.

Each combination of underlying norm and perturbation model yields a different theory for the

resulting robust stability and performance problems. Recently, we have begun to understand in

greater detail the relationship between these different theories and what their implications are for

control design. The two theories which will be most focused on in this research program both

involve L2 signal spaces. The theory for LTI perturbations will be referred to as the p theory and

the theory for Linear Time Varying (LTV) perturbations (as well as nonlinear) will be referred to

as Q theory.

Current researchdirectionsinvolvedeepeningour understandingofthe relationshipbetween the

variousuncertaintydescriptionsand the connectionswith modeling and data. Our emphasis inthis

program willbe to evaluaterecenttheoreticalwork thatprovideslessconservativeand more flexible

assortmentsof mathematical descriptionsof uncertaintymodels than was previouslyavailableand

push the development of new uncertaintymodels. For example, we plan to develop techniquesfor

dealingwith time-varyingand/or nonlinearperturbationswith bounds on theirdeviationfrom LTI
as wellas bounds on theirnorm.

2.1.3 Model Reduction of LFT Systems

Model reduction is an issue throughout our proposed research program, as we constantly seek to

find simpler descriptions of our problem. Based on the concept of the balanced truncation model

reduction method for the one-dimensional linear system, we have developed balanced truncation

model reduction method for more general LFTs [75]. An Hoo norm error bound for the LFT model

reduction method has been derived which is a direct generalization of the bounds for single-variable

systems. (The new proof is also the simplest yet for the previously known results.) This gives

a method for producing reduced order models of both multidimensional systems and uncertain

systems with guaranteed error bounds. The notion of balanced grammians is generalized using
LMIs.

Current research directions involve further extending model reduction for LFT systems, amd in

particular, the problems of uncertainty aggregation and component model reduction. We believe

both of these problems are extremely difficult and may not yield the clean results of the type we have

÷
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obtained for balanced truncation.We willbe lookingfor simplified problems with more analytic

propertiesas wellas studying computationallyorientedapproachesto the generalproblems.

2.1.4 Modeling from first principles

We plan to continue our program of extending the LFT (Linear Fractional Transformation) and

# framework [25] to modeling and model _lidation, and ultimately to system identification [71,

55]. Our greatest success to date in extending the LFT/# framework to make more direct and

systematic contact with modeling is in the area of control of flexible structures [3, 53, 52]. Here we

developed general methods for modeling the interconnection of uncertain models of substructures,
but identification to obtain initial models remains fairly ad hoc.

While details of modeling must necessarily remain domain specific, we believe it is possible to

provide a general framework for modeling engineering systems that is more amenable to control

design. For example, rather than accepting models of physical systems in terms of, say, linear
differential equations, the control engineer should encourage the use of LFTs with explicit repre-

sentations for those uncertainties known to be present on the basis of first-principle modeling. Also,

the LFT concepts for modeling uncertainty should be extended to nonlinear systems to increase

their flexibility. Although extending all the # machinery for analysis of nonlinear systems is very

long-term research problem, the basic manipulation of uncertain nonlinear models in a manner sim-
ilar to that available for LFT models should be reasonably straightforward. The deeper questions

of how to do this in a way that is both natural to engineers and facilitates the subsequent analysis

will be one focus of this research program.

2.1.5 Computational Issues in Solving LMIs

One ofthemost attractivefeaturesofthe new resultsisthe centralroleplayedby LMIs. SinceLMIs

are linearand convex,they are potentiallycomputationallyattractive.Although generalpurpose

convex optimizationroutineswillprovidepolynomial time algorithms,substantialimprovements

should be possibleby exploitingthe specialstructureof LMIs. This issomething we are currently

investigating[9].

2.2 Analysis

2.2.1 Introduction to the p Framework

The canonical # framework is shown in Figure 3. The system under consideration is represented

by M, and A is an uncertainty description. This uncertainty description may be block structured,

and may include repeated parameters. Note that the most familiar use of p involves treating the

uncertainties as norm bounded LTI perturbations (e. g. unmodeled dynamics) or equivalently as

complex uncertainties at any given frequency. A number of different extensions to these concepts

will be outlined in the following sections of this report. Note also that this setup is quite general.

Any interconnection of systems and perturbations can always be rearranged into this canonical

framework, with A as a block structured perturbation, and M as the system matrix resulting from

the interconnection.

The most well known use of # as a robustness measure is in the frequency domain. Suppose

M(s) is a stable transfer matrix of an LTI system. Further suppose that M is partitioned as:

[MH M12]M = M21 M22

10



Figure3: Feedback interconnectionforp analysis

Then/_ is essentially defined as the answer to the robust stability problem in the following sense.

The interconnection in Figure 3 is internally stable for all A's norm bounded by one if and only

if #(Mll) < 1 for all frequency. Furthermore if our performance criterion is that the worst case

L2-L2 gain from u to y should be less than one (i. e. an Hoo performance criterion) then we have

robust performance if and only if #(M) _< 1 for all frequency. For a more rigorous definition of

these concepts see [28, 29].
These results mean that we can evaluate the robustness properties of our closed loop system,

by using a frequency evaluation of/_. Note that at any given frequency point we have a constant

matrix /_ problem, for which good upper and lower bounds have been developed (see [28, 60])

and commercial software is available [5]. This traditional use of #, which has been widely used

for robustness analysis and synthesis, enables us to consider robustness of LTI systems to LTI

perturbations. In this report the canonical /_ framework outlined above is used as the starting

point for a number of new directions, which are aimed at developing much more powerful analysis

and synthesis methodologies.

2.2.2 Mixed # Analysis

In recent years a great deal of interest has arisen with regard to robustness problems involving

parametric uncertainty. These parameters cam represent coefficients in a model which have a

natural physical interpretation, such as masses, aerodynamic coefficients, etc., and are only known

to lie within some range. Hence we obtain problems involving uncertain parameters that are not

only norm bounded, but also constrained to be real. Of course we still wish to allow complex
uncertainties in our robustness problems, to cover unmodeled dynamics, and to allow us to handle

both robust stability and performance questions. This type of robustness problem, involving both

real and complex structured uncertainty, can be treated within a unified framework by formulating a

mized # problem, where the block structured uncertainty description is now allowed to contain both

real and complex blocks. This mixed/_ problem can have fundamentally different properties from

the more familiar complex/_ problem (where the block structured uncertainty description contains

only complex blocks), and these properties have important implications for both the theoretical

and computational aspects of the problem. In this section we give a brief review of some recent

results in this area, and some of the current research directions being pursued at Caltech on mixed

problems (see [28, 29, 58, 30, 60] and the references therein for results pertaining to the complex

/_ problem).

Having cast our robustness problems in the mixed/_ framework, the analysis question (for robust

11



stability and/or performance) reduces to one of evaluating mixed #. This is an area where much

recent progress has been made, and continues to be an area of active research, as is outlined in the

following subsections.

Fundamental Properties

It is now well known that real # problems can be discontinuous in the problem data (see [8]). As

well as adding computational difficulties to the problem this sheds serious doubt on the usefulness

of real # as a robustness measure in such cases, since the system model is always a mathematical
abstraction from the real world, and is computed to finite precision. However it is shown in [59]

that mixed # problems containing some complex uncertainty are, under some mild assumptions,

continuous in the problem data (whereas purely real # problems are not). This is reassuring from

an en_neering viewpoint since one is usually interested in robust performance problems (which

therefore contain at least one complex block), or robust stability problems with some unmodeled

dynamics, which are naturally covered with complex uncertainty. Thus in problems of engineering

interest, the potential discontinuity of mixed Iz should not arise.

Recent results in [65] show that a special case of computing lz with real perturbations only is NP

complete. While these results do not apply to the complex only case, new results in [12] show that

the general mixed problem is NP complete as well. These results strongly suggest that it is futile to
pursue exact methods for computing # in the purely real or mixed case for even moderate (less than

100) numbers of real perturbations, unless one is prepared not only to solve the real # problem but
also to make fundamental contributions to the theory of computational complexity. Furthermore,

it may be that even approximate methods must have worst-case combinatoric complexity [22].

Upper and Lower Bounds

The above results do not mean, however, that "practical" algorithms are not possible, where "prac-

tical" means avoiding combinatoric (nonpolynomial) growth in computation with the number of

parameters for all of the problems which arise in engineering applications. Practical algorithms for

other NP hard problems exist and typically involve approximation, heuristics, branch-and-bound,

or local search. Results presented in [80] strongly suggest that an intelligent combination of all

these techniques can yield a practical algorithm for the mixed problem.

Upper and lower bounds for mixed # have recently been developed, and they take the form of

generalizations of the standard bounds for the complex # problem [28, 60] (i.e. by applying the

mixed # bounds to complex # problems one recovers the standard complex # bounds). The upper

bound was presented in [31] and involves minimizing the elgenvalues of a Hermitian matrix. This

can also be recast as a singular value minimization which involves additional scaling parameters to

the complex # upper bound. It is shown in [79] that the mixed # problem can be recast as a real

eigenvalue maximization and that this in turn can be tackled via a power algorithm, giving a lower

bound for mixed #. A practical computation scheme for these bounds has recently been developed

[81] and will be available shortly in a test version in conjunction with the _-Tools toolbox [5].

The quality of these bounds, and their computational requirements as a function of problem

size, are explored in [80]. It is seen that the computational requirements are reasonable for up

to medium size problems (less than 100 perturbations). While the bounds are usually accurate

enough for engineering purposes, in a significant number of cases of interest, they are not. This is

in contrast with the purely complex nonrepeated case, where no examples of problems with large

gaps have been found. The use of Branch and Bound schemes to improve upon existing bounds has

been suggested by several authors (see [2, 70] and references therein). There are some important

12



issues and tradeoffs to be considered in implementing such a scheme, which can greatly impact

the performance. A selection of results from a fairly extensive numerical study of these issues is

presented in [80], and a Branch and Bound scheme is proposed which should form the basis of a

practical computation scheme for mixed #. This will be further explored in [56].

The upper and lower bounds from complex # theory not only serve as computational schemes,

but are theoretically rich as well. Connections between the bounds and various aspects of linear

system theory have been established, and further work in this area appears to have great promise.

A theoretical study of the mixed/_ bounds may yield new insight as well, and this is a subject of

current research. Initial results in this area are presented in [78], where it is seen that mixed #

inherits many of the (appropriately generalized) properties of complex #, although as has already

been seen, in some aspects the mixed/_ problem can be fundamentally different from the complex

/_ problem.

The Rank One Case and "Kharltonov-Type" Analysis

Problems involving robustness properties of polynomials with coefficients perturbed by real param-

eters have received a great deal of attention in the literature. This type of robustness problem leads

to a (real or) mixed p problem. Several celebrated "Kharitonov-type" results have been proven for

special cases of this problem, such as the "affme parameter variation" problem (see [7] for example),

and the solutions typically involve checking the edges or vertices of some polytope in the parameter

space. It can be shown that restricting the allowed perturbation dependence to be affine leads to

a real # problem on a transfer matrix which is rank one. Note that this "rank one" assumption is

very restrictive. Typically robustness problems motivated by real physical systems do not satisfy

this assumption.

The rank one mixed p problem is studied in detail in [20]. The authors develop an analytic

expression for the solution to this problem, which is not only easy to compute, but has sublinear

growth in the problem size. They are then able to solve several problems from the literature,

noting that these problems can be treated as special cases of "rank one p problems" and are thus

"relatively easy to solve". Even the need to check (a combinatoric number of) edges is shown to

be unnecessary.

This rank one case is also studied in [77], where it is shown that for such problems # equals

its upper bound and is hence equivalent to a convex problem. This reinforces the results of [20]
and offers some insight into why the problem becomes so much more difficult when we move away

from the "affine parameter variation" case to the "multiline_r" or "polynomial" cases [70]. These
correspond to # problems which are not necessarily rank one_ and hence may no longer be equal to

the upper bound and so may no longer be equivalent to a convex problem.

These results underline why there are no practical algorithms based on "edge-type" theorems,

as the results appear to be relevant only to a very special problem. Furthermore, even in the very

special "affine parameter case" there are a combinatorlc number of edges to check.

Practical Applications

The upper and lower bounds discussed in the preceding subsections have been implemented in

software. This software is currently being/_-tested at several industrial and academic sites, including

Honeywell, Phillips, NASA Dryden, Caltech, U. C. Berkeley and others. A test version is scheduled

for commercial release in September 1992, in conjunction with the p-Tools toolbox [5].

A number of interesting applications of the software to problems arising from real physical

systems have already been undertaken. The control design of a missile autopilot is considered
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in [4].The softwareisused to examine the robustness(inperformance) of the controldesign to

perturbationsinMach number, angleofattack,and unmodeled dynamics. This resultsina mixed/_

problem with two repeated scalarrealparametersand threefullcomplex blocks.The mixed bounds

were found to be quite differentto the bounds one would obtainfrom the associatedcomplex #

problem, and the performance predictionswere borne out by the simulations.

Controlof a flexiblestructureisconsideredin [6],and the robustnessofthe designisevaluated

with respectto variationsin the naturalfrequenciesofthe structuralmodes, as wellas unmodeled

dynamics. This resultsin a mixed # problem withfivescalarrealparameters and threefullcomplex

blocks.Interestinglyinthiscase,becauseofthe way the uncertaintiesenteredthe system,the mixed

and complex bounds were found to be very close.The controldesignswere verifiedin simulation

and experiment.For these(and severalother)examples the softwareworked well,providingtight

bounds forthe associatedmixed/_ problems.

The Next Generation of Algorithms

A number of improvements to the present computation schemes are under development. One

research direction is to improve the algorithms for computing the bounds. This is being actively

pursued at Caltech, and we refer the reader to I73] for the use of adaptive power iteration to improve

the lower bound performance, and [10] for the use of LMI techniques to improve the upper bound

computation.

Note however that the bounds from [31, 79] may be far apart (regardless of the computation

method). For these cases one must consider improving the bounds themselves. A promising ap-

proach is to use the existing bounds as part of a Branch and Bound scheme, which iteratively

refines them. In this way one can develop a scheme to compute guaranteed bounds for the mixed #

problem. Since the problem is NP hard one must expect that the worst case computation time for

such a scheme will be exponential. The real issue is whether or not one can produce a "practical"

scheme, whose t_jpical computation time is polynomial. We believe that it is possible to develop

such a scheme, using the results from [80], and this will be further pursued in [56].

2.2.3 LPV/_ (Q Stability)

Linear Parameter Varying # refers to a recent generallzatic]n of the standard structured singular

value setup. This generalization tests robustness and robust performance for time varying and

nonlinear perturbations. In this context, the uncertainties at| operators from L2 to L2 with induced
norm bounded by one. Linear parameter varying/_ gets its _ame from the useful interpretation of

perturbations as unknown varying parameters, as in the case of 0 below.

zk+1 = A(e(k))zk+ B(O(k))u 

= C(O(k))xk+

To clarifythe differencebetween LPV # and LTI/J we must firstreviewa few featuresof LTI #.

The standard (LTI)/_ softwareingeneraluse typicallycalculatesbounds for/zby doing a "fresp',

that isa frequency response plot. The frespisan attempt to calculates_p_(#(M(to))) which is

equivalentto a single/_test.Figure 4 representsthisequivalence.The principlereasonfor doing

the frespisthat the one-shotformulationtypicallyyieldslargegaps between the upper and lower

bounds for#, whereas the frespversiontypicallygeneratesa tighterbounds for#.
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Figure 4: Frequency Domain # (top) and State Space # (bottom).

The LPV # test is also a one-shot test, but there is no fresp version of the test. An obvious

reason for this is that there is no frequency domain for time varying or nonlinear operators. This is

of no consequence because of the important recent result [69] that LPV # is equal to the one-shot

upper bound for LTI #. In light of this, it is quite reasonable that there can be large gaps between

LTI # and its one-shot upper bound.

The one-shot upper bound for LTI # (which is equal to LPV #), commonly referred to as

Q stability margin [44], is a convex optimization problem, and is consequently computationaUy

tractable. In addition to the standard, commercially available, software to compute the upper bound

for LTI #, there are optimization schemes which give an indication of how well the optimization is

doing.
In addition to robustness analysis, there is a robust performance version of LPV # just as

there is for LTI #. Furthermore, controller synthesis is easier for LPV # than for LTI #. At

first glance, LPV # looks like a very useful tool for the controls engineer. However, there are

important limitations to LPV #. LPV # is a necessary and sufficient test for robust stability or

robust performance of an LTI system in the presence of norm bounded, but otherwise arbitrary,

perturbations or uncertainties. It is the worst case perturbations that determine stability and

performance. Consequently the analysis may be extremely conservative for perturbations that are

not worst case. In practice there are many time variations or nonlinearities that may be known,

or be constrained to be slowly varying, and we would like a nonconservative analysis technique for

such cases. LPV # does not generally prove adequate for such cases except when LPV # is close to

LTI #, that is except when time variations don't make much difference.
Currently, LPV # is only understood for the case of scalar uncertainty blocks. We expect that

results for more cases, e.g. repeated scalar uncertainty blocks, will be forthcoming.
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2.2.4 Frequency Domain Consistency Analysis

Robust control theory poses a problem of deciding whether a model is suitable for design and

analysis. There is a rich class of models to choose from, and it is difficult even to tell which ones

are consistent with experimental data. The consistency analysis problem (also referred to as the

model validation problem) in its simplest form is: given experimental data and a model with both

additive noise and norm-bounded perturbations, is it possible that the model could produce the

observed input/output data?
Consistency analysis can be reformulated as a generalization of p [55]. The p(QM) lower bound

to p is generalized to a lower bound for the generalization of p. Computation of this lower bound

can be attacked using a generalization of the power algorithms used for standard p. The natural

upper bound for the generalization of p is not a generalization of _(DMD -1). Rather, the upper

bound is formulated as an LMI where the solution matrices are still structured, but are no longer

all positive definite. Instead, some blocks of the solution matrix must be positive definite, while

other blocks must be negative definite.

In addition to providing a connection between real data and robust control models for LTI

systems, model consistency is the first instance we encounter of a connection between robust uncer-

tainty models and a prescribed time variation or signal, rather than a worst case variation or signal.

Recall that LTI p considers only worst case inputs and worst case LTI perturbations, while LPV

is similar except that the worst case perturbation may be time varying or nonlinear. In both

cases there is a single p test that answers the problem. In contrast, the model consistency problem

requires the solution to many g type problems. This seems natural when we consider that collecting

more data should require more consistency checking. Note that nonlinear simulation does provide

for some prescribed variation, but there is no uncertainty analysis beyond running the simulation

for prescribed perturbations to the nominal system, whereas p tests check all the perturbations at

once.

An important approximation the frequency domain model consistency analysis makes is that

there is a frequency domain. For finite horizon signals, as opposed to periodic signals, there is no

frequency domain. The benefit of this approximation is that it allows the consistency problem to

be decoupled into independent # type problems at each frequency. The resulting tests are similar

to an LTI p fresp, but in the consistency case there is no one-shot alternative to the fresp. In the

time domain tests discussed next, we will see that not only is there no simple one-shot test, but also

that the problems don't decouple they way they do in the case of frequency domain consistency

analysis. R_ther, the time domain problems are coupled together in one very large p type problem,

giving rise to the moniker "huge p".

2.2.5 Time Domain # analysis.

A crucial step in the generalization of robust control theory to time varying and nonlinear problems

as well as to robust identification problems is the development of time domain p analysis. To

understand the time domain p setup, we first consider a simple time domain interconnection.

Figure 5a shows two steps of a discrete time linear time varying system, while Figure 5b shows

the same interconnection arranged in a different form. We emphasize that the operators from

(x0, ul, u2) to (z2, 91, 92) in the the two diagrams are identical. Note that this rearrangement is

easy for any number of time steps.

It is easy to form the interconnection of two time steps of an uncertain time domain operator

shown in Figure 6a and to form the equivalent system shown in Figure 6b. Again, it is easy to

generalize this to any number of time steps. Figure 6b is very reminiscent of the standard p analysis
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setup. Once we define an appropriate notion of performance from input u to output y and from

initial condition z0 to final state zn (where n = 2 in the figure), then we can add a performance

block to the uncertainty structure in Figure 6b. This results in a robust performance # problem

for a finite horizon discrete time (possibly time varying) uncertain system. This application of/_ is

called linear time varying _ or LTV/J.

It is important to note that the analysis is for worst case performance for the worst inputs,

initial conditions, and uncertainties, and for the prescribed time variation in M. This is in marked

contrast to the LPV p case, where there are no prescribed time variations, only worst case time
variations.

This formulation of LTV p would not be of much interest without some hope of a computational

algorithm that takes advantage of the special structure of the problem (e.g. the special structure

of the matrix M in Figure 6b). Current p computation time for unstructured matrices typically
grows with n 3, where n is the size of the problem. Consequently, computation time of current

algorithms for the LTV p problem would grow with the number of time steps cubed, and would

thus be impractical for many problems of interest. To see how an efficient algorithm might be

possible, observe that Figure 6b can be rewritten as Figure 7 where PI and P, are permutation

matrices (their output is simply a reordering of the rows of their input). This structure admits

a modification of the lower bound power algorithm for p computation that is both very easy and

very efficient. We expect the upper bound calculation also to benefit substantially from this special

structure.

z2 A2 B2 : zl [ A1 BI

C2 D2 _-" CI Dx _-"
u2 ul

L
z 2 .._-

yl -4.-

y2 -_--

0 Aa B10

A20 0 B2

O C1D10

C20 0 D2

J zl

zO

ul

_-- u2

(a) (b)

Figure 5: Simulation as a matrix operation.

2.2.6 Time Domain Mixed g Analysis

If we allow the further constraint that some uncertainty blocks be real, time domain g analysis

becomes time domain mixed # analysis. Computation of the upper bound for time domain mixed

analysis, while a straightforward combination of the time invariant mixed # upper bound and the

special structure of the time domain complex _t problem, will require some careful investigation, as

the mixed _t upper bound computation is rather intricate.

A very important special case of time domain mixed # is easy. When all the uncertainties are

constrained to be real, and the time varying plant and its initial condition are real, then the worst

case solution is all real. In this case the computation does not require the added complexity of the

mixed/_ computation.
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Figure 6: Simulation with model uncertainty
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Figure 7: Computation setup
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2.2.7 Time Domain Consistency Analysis

As in the case of time domain mixed p analysis, time domain consistency analysis requires an

extension of an algorithm for a general matrix to efficiently handle a much larger and highly struc-
tured matrix. While the lower bound should extend easily, the upper bound may be problematic.

The lower bound for consistency analysis is an extension of the lower bound power algorithm for

mixed p, and can easily take advantage of the structure of a time domain problem the same way
the lower bound for time domain p does. The upper bound for consistency analysis, however, is not

an extension of the upper bound for mixed/z analysis. Instead, the upper bound for consistency

analysis requires an LMI formulation. LMI computation is a hot topic in the field now, and it

is anticipated that research there will yield a practical upper bound computation for frequency
domain consistency analysis. The resulting upper bound for frequency domain consistency analysis

must then be modified for the time domain consistency analysis to take advantage of the special

structure of the time domain problem.

2.2.8 /_ on Trajectories

A nonlinear simulation results in a trajectory. If we linearize the nonlinear system about this

trajectory, we get a linear time varying system. Since time domain mixed p will allow us to analyze

robust performance for linear time varying systems, we will seek to extend this analysis to one
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appropriate for nonlinear systems along a trajectory. (Currently, robustness analysis for nonlinear

systems consists of many simulations for various prescribed perturbations from the nominal.) The

dimculty here is that this extension appears to require that the (very large) matrix for which we are

computing # now depends on the solution to the # computation. One approach to this difficulty

is to iterate, using the new trajectory as the nominal trajectory for the subsequent iteration. This

approach might be substantially improved by incorporating some sort of trajectory iteration with

each iteration within the p computation. If this proves successful, the resulting analysis would

replace the tedious and endless simulation typically required for nonlinear robustness analysis.

2.2.9 Robust Identification

Robust identification attempts to find parameter values and uncertainty bounds, for robust control

models, that best describe the observed behavior of the system. Currently, robust identification

is entirely ad-hoc, proceeding without even any consistency checks. We propose to develop an

algorithm that finds optimal parameter values that are consistent with observed data. This will be

done via an extension of the time domain consistency analysis. In [72] a very similar problem is

posed in the frequency domain.

, I- :

Figure 8: LFT Parameter Dependence

We consider models that are an LFT on some parameters we wish to identify. Then the single

time step building blocks for time domain consistency analysis are as in Figure 8. When the separate

single time step building blocks are combined together we get the setup for robust identification.

This setup is different from the time domain consistency analysis in that the uncertainty structure

contains blocks with the as yet unknown parameter values. Typically, we have constraints on the

parameter values we wish to identify. In this case the necessary modifications of the time domain

consistency analysis algorithm are easy and are analogous to modifications of standard algorithms
already being pursued in other research.

2.2.10 Nonlinear Scheduled Identification

Our ultimate goal for an identification technique is a combination of robust identification and/_

along trajectories. Any sort of identification requires a priori knowledge or assumptions. Typical

assumptions include causality, time invariance, minimum decay rate of (possibly time varying)

impulse response etc. When we consider the case of nonlinear identification, the role of a priori

knowledge is crucial: any collection of input/output data is consistent with a collection of nonlinear

operators that is so large that they collectively have no consistent predictive v-_lue. Furthermore,

individual records of input/output data in general do not contain information about the global

behavior of nonlinear systems, instead they contain information of behavior along a trajectory.

19



Consequently we expect that any nonlinearidentificationscheme of generalinterestmust contain

the featuresinherentin the combination of robustidentificationand p along trajectories.

2.3 Synthesis

2.3.1 Mixed/_ Synthesis

The problem of synthesizing a controller which is (optimally)robust to structured mixed uncertainty

is very difficult, since the associated optimization problem is not convex. Some exact solutions have

been presented for special cases of this problem (see [63] for example, which reduces the "rank one"

/_ synthesis problem to a convex optimization problem), but as yet there is no globally optimal

solution to the general problem (even in the purely complex case).

Despite this fact the (complex) p-synthesis procedure first outlined in [29] has been successfully

applied to a large number of engineering problems (see [6] for example). This procedure involves

a "D-K iteration" between computing the p upper bound, and solving for an Hoo (sub) optimal

controller (both of which are convex problems). This procedure, which was developed for p problems

involving only full complex blocks, does not guarantee to find the globally p-optimal controller, but

has often been found to work well in practice.

One of the current research goals at Caltech is to extend this procedure to the mixed case

(initially for nonrepeated real scalars and full complex blocks), by exploiting the new analysis tools
for the mixed p upper bound described in the preceding subsections. Substantial progress has

already been made on this problem, and prototype software for mixed p synthesis is currently

under development. In principle one can further extend this procedure to allow for repeated (real

or complex) scalar blocks as well. In order to do this however, one needs to be able to fit a MIMO
transfer matrix to frequency response data (for nonrepeated blocks only SISO fits are required),

and a number of practical issues need to be worked out before an efficient implementation of this

procedure can be developed for the repeated case.

2.3.2 Stabilization of LPV/LFT systems

The key breakthrough in LPV/LFT synthesiswas a seriesof resultsand machinery initiatedby

Lu, Zhou, and Doyle in [44].In thispaper, necessaryand sufficientconditionsare derivedfor

when an LFT system can be stabilizedvia an output feedback controllerwhich depends on the

same A as the plant. Both p and Q stabilityare considered,and a directgeneralizationof the

Youla parametrizationofallstabilizingcontrollersisobtainedviaa generalseparationtheorem that

reducesthe output feedbackproblem to FullInformation(FI)and FullControl(FC) problems. For

Q stabilitythe FI and FC problems can be solvediffa certainLMI issatisfied,and the stabilizing

controllercan always be taken to be a constantgain.

The machinery developed in [44]and subsequent researchby Lu and Doyle isperhaps more

important than the specifictheorems. This ....... allowsconventionalstabilizationtheory

involvingobserversand statefeedback to be extended to a much largerclassof uncertainand

time-varyingsystems. These stabilizationresultshave been furtherextended recentlyin a number

of directions.For example, Packard and Becker [57]considerstabilizationof LPV systems with

parameters that need not enter as LFTs and alsoaddress computational issues.There are also

extensionsto optimal controlproblems in recentwork, primarilydue to Packard, Zhou, Doyle and

theircoworkers.They addressthreecontrolproblems,allofwhich involvereformulationintoLMIs.

The problems are:

• Gain-scheduled, state-feedback with Q stability criteria for uncertain systems.
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• Optimal, constant, block diagonal, similarity scaling for full information and state feedback

Hoo problems.

• A theory for optimal performance in systems which depend on several independent variables.

It provides a new and much simplified development of the state-space Hoo theory and a

direct generalization to multidimensional systems and gain-scheduled controllers for uncertain

systems.

The use of the term "gain-scheduled" may be a little misleading as the usual use of this term

implies parameters that are slowly varying, whereas most of the theories described above neither

requires nor exploits that. Another line of work involves mixed H2/Hoo optimal control, which

directly generalizes the standard H2 and Hoo theories. The most immediate research question has

to do with the engineering implications of these new results. Since the new stabilization results and

these optimal control results have a certain gain-scheduling interpretation, we will compare them

with other results on gain scheduling.

2.3.3 Connections between LPV and LTV systems

An obvious question, and one that has great potential for fruitful research, considers the relationship
between the recent work in LPV stabilization and standard methods for LTV systems. Since the

publication of [23], there have been numerous extensions of the state-space Hoo methods to LTV

systems. We will compare robust designs for LFTs with unknown but time-varying perturbations

with optimal time-varying controllers for particular time-varying values of the perturbations.

2.3.4 "Gain Scheduling" by LPV stabilization and p synthesis

We consider two distinct scheduling schemes which use standard p synthesis D-K iteration, but

in slightly different ways. One method allows the controller to be an LFT on the scheduling

parameters 8. Such a setup is shown in Figure 9(a), and is equivalent to the rearranged system in

Figure 9(b). Note that since 8 now enters K only through P', Figure 9(b) is a standard mixed p

synthesis problem. The resulting design is robust for the worst case constant 8, and retains some

robustness for slowly varying 8. Note that this problem requires mixed-p synthesis with repeated

parameters, which is a subject of current research.
Another method is motivated by recent results from [44], where the authors develop a parametriza-

tion of all Q stabilizing controllers which vary with the parameters 8. These controllers are

parametrized in terms of a stable free (possibly time varying) parameter Q. The scheduling proce-

dure is as follows. For each 8k in a set, design a (stable) Qk for the "Trozen system". Then choose

suitable Ak(8) to define an interpolated Q(8) - _-,k Ak(e)Qk. As Q(8) is stable, the result!ng closed

loop system is guaranteed to be stable (even for rapidly varying parameters), and much of the

"frozen system" performance characteristics are retained for slowly varying parameters.

Both of the techniques suggested need to be much more systematic. We plan to develop a

single methodology that includes both methods as special cases and eliminates several of the ad
hoc choices.

2.3.5 LTV and LPV/LTV p synthesis

This work will seek to generalize the D-K iteration of p synthesis by using standard LTV Hoo

for the K part. The choice of the D is not so obvious, as there is no natural separation of the

problem in the frequency domain. We expect to use the time-domain p analysis on finite horizons
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Figure 9: Synthesis setup for slowly varying parameters

to select suitable D scalings. This will be extended to mixed real and complex time-domain/z as

that becomes available. Combined LPV/LTV _ synthesis will then build on connections established
between LPV and LTV theories.

2.4 Nonlinear control theory

It is a general principle for nonlinear systems that properties of the linearization of the system about

a point can be extended locally to the full nonlinear system. If the linearization of a nonlinear system

is controllable, control laws for stabilization and tracking of the linearization can be used for local

stabilization and tracking of the original system. Often the regions in which these control laws

can be applied is quite small relative to the desired operating region of the system. The challenge

of nonlinear control theory is to design controllers which satisfy design criteria in larger operating

regions and provide improved performance as compared to a linear control design.

2.4.1 Feedback linearization and nonlinear inversion

One powerful approach to increasing stability regions for nonlinear systems is to search for a

feedback transformation which converts the nonlinear system into a linear one. That is, we search

for a coordinate transformation and a state-dependent precompensator such that the resulting

system, in the new coordinates, is linear. If such a transformation is possible, the system can be

stabilized on the region in which the feedback transformation is well-defined using linear methods.

For some classes of systems, such as robot manipulators, the transformation is defined everywhere

and global stabilization of the nonlinear system is possible. The literature on this subject is vast;

see [38] for an introduction to the basic concepts.

The necessary and sufficient conditions for feedback linearization require that the linearization
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of the system be controllable and that a certain set of vector fields form an involutive distribution.

The involutivity condition is the more restrictive of the two, and is not satisfied for many important

nonlinear systems. Systems which cannot be feedback linearized via static state feedback can some-

times be linearized using dynamic precompensators. The basic idea is to add integrators to selected

input channels to achieve a system which can be I/O decoupled and linearized. Both static and

dynamic feedback linearization require measurement of the states for use by the precompensator.

Some results are available for llnearization via output feedback [46], but the conditions under which

such a feedback exists become considerably more restrictive than the full-state feedback case.

A serious drawback of all feedback Unearization techniques is the failure to account for uncer-

tainties. As with many inversion methods, feedback linearization can be extremely non-robust.

The effect of modeling errors is understood in some simple situations (where so-called "matching
conditions" are satisfied), but a general framework for analyzing the effects of uncertainty on the

performance and even stability of the controller is not available.

More significantly, the disturbance rejection properties of nonlinear controllers can be extremely

poor. As a simple example, consider the scalar nonlinear system

= e=(u + d)

71 = z +n

where a is the control input, d models actuator noise, n models sensor noise, and V is the plant

output. The precompensator tt = e-% feedback linearizes the system when the disturbances are

ignored. The usual approach is to now design a controller for the Iinearized system. If we seek to

minimize the Boo gain between the disturbance vector (d, n) and the output (7, v) for the linearized

system, the optimal feedback is v = -z, However, with this choice ofprecompensator and feedback,
the closed loop system becomes

= -z + e_d
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which has finiteescape time fora disturbanced > e-I. In fact,forthisparticularexample system,

itcan be shown, using eitheroperator theoretictechniquesor nonlinearJ_ootechniques,that the

optimal Hoo gain for the fullnonlinearsystem isv_ and that thiscan be achieved using unity

feedback.This example illustratesthatblindapplicationoflinearizingfeedback can giveextremely

poor performance.

Additional resultsare availablewhen the controlspecificationis to track a desiredoutput

signalratherthan regulatethe system to a point.These resultsincludetrackingthe output of a

model (linear)system by solvinga model matching problem [11]and trackingthe output of an

undriven exosystem using nonlinearregulatortheory [39].Necessaryand sufficientconditionsfor

solvingtheseproblems are known and, asin the exactlinearizationcase,axehighlyrestrictive.An

additionalrequirementisthat the system remain in the neighborhood ofa fixedequilibriumpoint.

Related to linearizationtechniques,are so-called"dynamic inversion"approaches,which have

found recent applicat/onin a/rcraftflightcontrol[76,51, 13]. In dynamic inversion,a state-

dependent input coupling matrix is invertedand nonlinearterms in the dynamics are directly

cancelled. The resultingsystem is then controlledvia linearcontroltechniques,often using a

nominal state-spacetrajectorywhich iscalculateda prioriusinga simplifiedapproximation ofthe

nonlinearsystem. The work in thisareaisreminiscentof computed torque controlof robot ma-

nipulators,where dynamic nonlinearitiesare cancelledbeforeapplyingfeedback control.As with

more generalnonlinearcontroltechniques,researchintothe disturbancerejectionand robustness

propertiesof thisclassof controllersisstillneeded.

2.4.2 Approximate methods

To extend the methods for nonlinearstabilizationand trackingto a largerclassof systems, it

isadvantageous to study approximation of nonlinearsystems. The basicidea isto approximate

a given nonlinearsystem by one which satisfiesthe restrictiveconditionsnecessaryto designa

nonlinearcontroller.The simplest(and most classical)such approximation isthe linearizationof a

system about a constantoperatingpoint.By designingan appropriatecontrolforthe approximate

system, we achievea controllerwhich works locallyforthe nonlinearsystem. The goalsin using

more complicatedapproximations are to extend the regionin which a controllercan operate and

to improve performance.

One technique for building controllers is through the use of approximate feedback linearization.

In this method we construct a system which approximates the plant in some appropriate sense and

which is also feedback linearizable. We then proceed to design a controller for the approximate

system and apply it to the original system. This technique often results in a system which is

controlled in a larger region of an equilibrium point [37], or, in the case of a uniform system

approximation, in a region about an entire equilibrium manifold [35]. Typically a %lowly-varying"

condition is required which limits the magnitude and speed of the reference trajectory. These

techniques generalJze linearJzation about a point, and, in the latter case, are related to gain-
scheduling methods. Since we allow higher order approximations, we expect to be able to find

controllers which perform better than their linear counterparts. These results are at least partially

verified using a robotic model of an acrobat (dubbed the acrobot) as a simple example [36].
A related approach has been used by Krener to construct polynomial approximations to non-

linear systems [41, 40]. Using ideas based on Poincard linearizations of nonlinear systems, one

can construct approximations of a given order which are feedback linearizable. Again we assume

that activity occurs near a single operating point and hence we can search for a single linear con-

troller which provides adequate performance. Extensions to the case of motion near an equilibrium
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manifold would appear to present no major difficulties. The primary limitations are the use of

Taylor series (which limit the range in which the approximation is valid) and satisfaction of a linear

resonance condition.

It is also possible to extend output regulation techniques using approximate mappings between

the exosystem and plant trajectories. As in the approximate feedback linearization, the basic result

using this technique is that trajectories which are slowly varying and close to an equilibrium point

can be approximately tracked.

A common theme in all of these approximation methods is the need to remain near equilibrium

points of the system. In addition, it is also necessary to limit the speed of the system and hence the

controllers only work in situations where slowly-varying outputs must be tracked. Current research

is searching for methods to generate approximations which provide a coarser approximation to the

system, but in a larger re,on. With such an approximation, it may be possible to control the

global behavior of the system far away from equilibrium points and then switch to a more precise

local controller when the system is operating near a fixed operating point.

A feature of the approximate linearization techniques described above is a large degree of free-

dom in constructing the approximate vector fields which are used to generate a controller. Currently

there is little understanding of how to choose between different approximations so as to improve

the performance of the overall controller. One of the goals of this research effort is to develop

an understanding of how the choice of different approximations affects the overall control design

process and, more importantly, how the overall control design process can be used to optimize the

choice of approximations.

2.4.3 Model predictive control

A system's operation is always subject to constraints, i.e., nonlinear dements which the controller

must be equipped to handle. Most common are actuator saturation constraints but other operating

constraints are usually present as well. Over the last decade Model Predictive Control (MPC), also

referred to as Receding Horizon Control, has emerged as the technique of choice for dealing with

complex constraints. MPC has attracted academic attention [48, 47, 49, 61, 62] and has been

adopted widely in the process industry [21, 33].

In the model predictive control formulation, the control objective is expressed in terms of

a single (usually quadratic) objective function and the operating constraints are translated into

(usually linear) inequality constraints. The algorithm involves the on-line solution of a constrained

optimization problem to determine a set of piecewise constant (discrete), feasible future inputs

which will cause predicted values of future plant outputs to track a prescribed trajectory "as closely

as possible" for a specified time period (horizon) into the future. Feasible future inputs are those
which do not violate any input constraints and produce predicted outputs which do not violate

any output constraints. This optimization is solved using mathematical programming techniques.

Although several future input values are calculated at each sampling time only the first control

action is implemented and then the horizon is moved forward ("moving horizon" or "receding

horizon") and the "optimal" control inputs axe recalculated based on the updated information

(measurements) about the system.

Because of the predictive nature of the algorithm, constraint encounters are anticipated and

the control action is smooth. This soft compromising behavior is undesirable if there are several

constraints with clear priorities. The main tuning parameters are the weights on the different terms

in the objective function and the length of the horizon. Because a mathematical program is an

integral part of the control algorithm it is very difficult to study its stability, performance and
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robustnessanalytically.Therefore,the tuning pars_netersare mostly selectedby trialand error

based on simulations.For the tuning the behavior of the system has to be consideredwhen itis

unconstrainedas wellas when varioussetsof constraintsaxe active.

Dozens ofpapers have appeared inthe literaturedescribingvariousversionsof MPC algorithms

and applications since the report on Dynamic Matrix Control (DMC) by Shell [21], which started a

resurgence of interest in this old idea. The activity is now more widespread than ever as summarized

in a recent plenary by Gilbert [34]. An application-oriented survey is contained in [33], important

recent contributions are due to Rawlings [64], Mayne [48, 47, 49], Polak [61, 62] and coworkers.

As part of MPC, a mathematical program is solved on-line in real-time. Because of the opti-

mization, the performance for the nominal system (without uncertainty) as observed in simulations

is usually excellent--as one would expect. The price one pays for this optimization approach is that

it becomes exceedingly difficult to study stability, robust stability and robust performance with the

modern analytical tools [50]. After many attempts by various researchers nominal stability has

finally been addressed by Mayne [48, 47] in a general setting and very clean results for the case of

a linear system with linear constraints are available from Rawlings [64].

Some interesting approaches have been proposed to address the robust stability and performance

problems. The idea is to find--in a receding horizon manner--the manipulated variable moves
which minimize the worst case tracking error predicted by a model in the family of possible plants.

In addition system constraints are enforced for all models in the set [16, 49, 61, 62]. However, our

simulation experience suggests that this objective often leads to a solution which is not useful from

a practical point of view. Moreover, the resulting rain-max problems axe usually extremely complex

numerically.
We had limited success [15, 16] assuming that the impulse response coefficients are afline func-

tions of some uncertain parameters whose bounds define the set of LTI models. In this particular

case the robust MPC problem can be formulated as a simple linear program. Uncertain gains in

the elements of multi-input, multi-output systems can be handled in this form. Input (actuator

positioning) uncertainty which has been found to be the dominant cause of poor performance for

ill-conditioned systems, can be described as well in this manner.

In summary, notwithstanding a number of laudable attempts, we axe far away from a set of

analysis and synthesis tools which account for model uncertainty described in a manner which has

proven useful in the linear context.

2.4.4 Antiwindup Bumpless-Transfer I
The most common nonlinearity that control designers must deal with is control input saturation

due to actuator limits. A saturation effectively turns-off the controller temporarily (no change in

manipulated variable) and the controller states have to be adjusted properly ("Anti-Windup') as

the manipulated variables come out of saturation. Without specific compensation for this, a poor

transient response or even instability can result. Likewise a selector switches controllers in and out

of a loop, in effect, switches them between "manual" and "automatic". A similar compensation is

needed ("Bumpless-Transfer') to guarantee stability and a good response.

In standard Antiwindup Bumpless-Transfer (AWBT) schemes, actuator constraints are recog-

nized by measuring the actual (constrained) implemented value of the manipulated variable or

modeling the constraint. Other operating constraints axe expressed in terms of standard control

logic elements, in particular, selectors. The controller design proceeds in two steps where first an
acceptable linear robust controller is designed neglecting all nonlinear loop elements and objectives.

Then a compensation scheme is added which deals with the nonlinear issues.
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with the two factorsimplemented asshown inthefigure.Here N isa nonlinear(saturation)operator

and V -I resultsforthe dottedblockwhen N = I, i.e.thereisno saturation.

Numerous differentAWBT schemes have been proposed in the literatureor have been imple-

mented in commercial hardware and software.No generalguidingprincipleisdiscernible;ad hoc

engineeringarguments are the rule.In [17,18]we establisheda common framework forcomparing
the numerous differentschemes. We found that allAWBT schemes presented in the literature

can be put in the form shown in Figure 11, where K isthe compensator designedfor the linear

system P, and R the AWBT compensator. R2 isa "directionality-compensator" which isrequired

only for MIMO systems which are sensitiveto "input-uncertainty",in particularill-conditioned

systems [27].The variousschemes differin theirchoiceof R.

In [14,18] we postulatedvariouspropertiesof R and establishedin an axiomatic fashiona

generalclassofAWBT compensators. We determined thatallAWBT compensators satisfyingthe

postulatescan be presentedinthe form shown inFigure 12,where the controllerK(s) ofthe linear

system has been factoredintotwo coprime factors:

=

To find the "best" AWBT compensator one has to search over all coprime controller factorizations.

When looking for an appropriate objective function for the search we discovered some basic trade-

otis which have to be addressed when designing AWBT compensators.

In particular, for an AWBT compensator with very good local performance, it may be impos-

sible to establish global stability guarantees for the nonlinear system. For example, the internal

model control implementation [50] of the controller is globally stable for any actuator nonlinearity.

However, it is almost obvious that the performance of this AWBT compensator is not necessarily

very good because the "controller" is entirely unaware if the manipulated variable has saturated or

not. The compensator may also be very sensitive to noise in the measurement of the manipulated

variable. It usually achieves good performance via high gain feedback from the measured/modeled
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manipulated variables, which quickly resets the controller states as the manipulated variables move

into and out of saturation. In turn, this high gain feedback can lead to the noise sensitivity.

Finally, the anti-windup schemes do not readily extend to multivariable systems. The classic

concept of applying several singie-loop controllers with standard AWBT compensators (as available

on commercial computer control systems) to a multivariable system is not an acceptable answer

either. Even if an unconstrained MIMO system can be controlled quite well with a set of single-loop

controllers, the control system can fail in the presence of actuator constraints when the controllers

are equipped with standard SISO AWBT compensators.

In our previous work we identified the following AWBT objectives:

1. Guarantee stability of the nonlinear system.

2. Optimize performance of the nonlinear system (in particular, minimize "directional sensitiv-

ity").

3. Optimize mode switching performance (minimize the amemory" of the controller).

4. Achieve linear performance recovery (avoid sensitivity to noise in the measurement of the

manipulated variable).

We have quantitative analysis tools to measure to what extent these objectives are satisfied. We

would like to develop a synthesis procedure which will generate an AWBT design which meets given

performance requirements, stated in terms of the developed analysis methods, or establishes that

no such AWBT design exists.

Performance as well as stability of the nonlinear system both with and without model error

(I & 2) can be assessed via an oo-norm test with appropriately optimized scaling matrices (p-

test [26]). The linear performance recovery (4) can be assessed directly with an oo-norm test as

well. Minimization of memory (3) can be approached indirectly via minimization of an upper bound

on the Hankel norm, again expressed through an oo-norm of the appropriate transfer matrix. In

principle, an optimal trade-off between the various appropriately weighted norms can be achieved

via Constrained Structure Control Synthesis [54] as suggested by [14]. This problem leads to a set of

coupled l_iccati equations for which effective solution techniques are not yet available. Furthermore,

it is not clear that the various approximations introduced along the way preserved enough of the

original problem characteristics to make the solution worthwhile.

2.4.5 Limitations of current theory

Current methods in nonlinear control rely on linear techniques for controller design. For some

methods, such as output regulation, we explicitly use the linearization of the system about a single

operating point to generate stable control laws. For feedback llnearization based techniques, the

system is transferred into a constant linear system over a (potentially large) region of the state

space, where linear control methods can be applied.

The use of a single linear system for nonlinear control design is a serious handicap. Many

nonlinear systems change behavior drastically at different operating points; forcing such a system

to behave linearly by using nonlinear feedback requires large amounts of control effort. As a

consequence, many nonlinear controllers are ill-conditioned and can generate large restoring signals

even for small error signals. Furthermore, by transforming the inputs and states of the system,

performance specifications become more complex. For example, a quadratic cost function on the

original system may be transformed into a complicated nonlinear function. The use of quadratic
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cost functions in the transformed variables can also be problematic: no physical intuition is available

to help guide selection of weights in the feedback linearized coordinate system.
A common feature in almost all nonlinear controllers is the implicit or explicit generation of

a state-space trajectory and subsequent stabilization of that trajectory. For all of the controller

formulations given above, we can view the controller as a feedforward term which gives the nominal

input required to move along the desired trajectory and an error correction term. The primary
difference between the different methods is the form of the error correction term. For example, out-

put regulation uses the llnearization of the system about a single equilibrium point while feedback

linearization uses a linear control law in an appropriate set of coordinates.

This two step approach to trajectory tracking can be carried one step further by completely

decoupling the trajectory generation and asymptotic tracking problems. Given a desired output

trajectory, we first construct a state space trajectory zd and a nominal input ud. The error system

can then be written as a time-varying nonlinear system, depending on the nominal trajectory

and input. Under the assumption that our tracking error remains small, we can linearize this

time-varying system about e = 0 and stabilize the e - 0 state. One drawback to decoupling

the trajectory generation and feedback portions of the controller is the need to find the nominal

input and state trajectory exp/icit/y before a feedback compensator can be generated. In the other

approaches, this trajectory generation was implicit and hence a single controller could e used to

track a large class of signals.

2.4.6 Nonlinear Inversion and Scheduling

To integrate nonlinear design with robust synthesis, we plan to use nonlinear inversion techniques

to capture as many of the system nonlinearities as possible, and to use robust control techniques to

account for the remaining nonlinearities and plant uncertainties. This approach has the advantage

of using existing methods to develop working controllers, w_ch can be tested on applications and

used to further direct the theory, while at the same time providing a path to developing a formal
mathematical structure for understanding robust control in k nonlinear context.

The first approach to generating a robust nonlinear controller will be to combine a standard

feedback linearizing controller with a robust, linear, outer loop controller to provide robustness.

Since most nonlinear systems are not exactly feedback linearizable, we will explore the effect of

different approximations on the robust performance of the system. To analyze the robustness

properties of a given control, we will simulate the closed loop control law on a class of trajectories

and use existing # techniques to evaluate the overall performance of the controller along a trajectory.
More complex strategies will rely on the use of LPV and LTV _ synthesis techniques to optimize

the choices in the nonlinear inversion stage. In particular, we envision a methodology in which

inversion is combined with gain-scheduling to create a controller which uses the geometric structure

in different operating regions to the extent possible and minimizes the need for linear controllers to

account for system nonlinearities. Nonlinearities that cannot be inverted out of the system will be

accounted for using LPV and LTV synthesis methods. This will be accomplished by considering
the remaining nonlinear system to be a linear system with the nonlinear dependency modeled as

a parameter variation. This technique is conservative since the dynamics of the "parameters" will

be ignored.

The eventual goal of this line of research is to push increasing amounts of the robustness

analysis into the nonlinear controller and to develop a methodology in which robust performance

in the presence of uncertainty can be analyzed in a nonlinear formalism.
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3 Flight control and related application areas

We plan to develop several application areas to motivate and provide context for the theory. The

largest of these applications will consist of a sequence experiments in flight control for rotary and

fixed wing aircraft.

3.1 Pitch-axis Thrust-Vectoring

This section provides a brief review of current methods in the control of thrust-vectored aircraft.

Fundamental concepts can be found in the review article by Gal-Or [32].

3.1.1 Conventional control design for thrust-vectored aircraft

Conventional control strategies for fixed-wing aircraft are primarily intended to augment the sta-

bility of the aircraft and decouple the body axes. The primary methodology is linear synthesis with

the controller scheduled along an equilibrium manifold over the operating envelope. The scheduling

parameters are generally chosen so that they are slowly varying and reflect large changes in the

dynamic behavior of the system. Figure 13 shows a typical scheduled controller structure.
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Figure 13: TypicalStructureof a Gain-Scheduled Controller
!

The main problem with thiscontrolstrategyisthat iJ order to guarantee performance and

stabilityforthe globalscheduledsystem the schedulingparameters need to be slowlyvaryingand

capture essentialnonlinearitiesof the system [66,68]. This generallyprecludesthe use of large

maneuvers overthe operatingenvelope.

3.1.2 Supermaneuverability strategies for thrust-vectored aircraft

When large maneuvers are required in the performance objective, new techniques must be consid-

ered. If exact global nonlinear models are available, these problems tend to be well-posed in the
nonlinear framework.

As discussed previously, if the aircraft possesses certain geometric properties then coordinate

transformations can be constructed which exactly linearize the input-output behavior. Once this

coordinate transformation is made, a controller can be designed using standard linear theory. This

technique has been shown to be quite successful solving local problems, such as output regulation.
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Since the geometric conditions on the existence of the coordinate transformations are quite stringent
this technique generally only yields local results even if global models are available. If the local

region is large enough then problems such as trajectory tracking can be considered.
Motiwted by this problem, approximate techniques ha_e been developed so that the coordi-

nate transformations approximately linearize the system over an equilibrium manifold [35, 41, 40].

These techniques provide schemes to linearize along equilibrium manifolds to order-p. That is, the

system is linear near the equilibrium manifold up to polynomial terms of order p, where p is a

design parameter. The main benefit of this technique is that the system can be linearized along

an equilibrium manifold as opposed to near an equilibrium point. Hence steady-flight trajectory

tracking can be done, as well as output regulation.

Since both of the above strategies rely on linearization near eqnilibrium manifolds they still

provide no help when unsteady-flight maneuvers are desired. Recently techniques for stabilizin 9

unsteady-flight maneuvers have been developed. They are generally used in systems where open-

loop (pilot) control moves the aircraft through the unsteady-flight maneuver and the closed-loop

control provides stability over this maneuver. This strategy relies heavily on bifurcation analy-

sis [19]. Controllers are generally a composition of a linear controller, which extends the stable

operating envelope, and a nonlinear controller, which stabilizes the periodic orbits resulting from

bifurcations along the edge of the stable operating envelope [1]. The drawback to this technique is

that the parameters generating the bifurcation are modeled as time-invariant; whereas, for a real

system they will be time-varying. This can lead to complications in the analysis.

A major drawback of all of the preceding nonlinear methods is the requirement of having
exact nonlinear models -- e.g. there can be no modeling uncertainty. This means that one can

generally only expect these control techniques to yield qualitative results; such as predicting the
existence of specific bifurcations in the operating envelope or the general shape and size of the stable

operating envelope. Quantitative results are much more dubious. Without uncertainty modellng
and robustness the controllers can not be expected to perform quantitatively as the theory predicts.

The issue of robustness is the driving focus of our research program in nonlinear control. Our

initial efforts will be directed at using available robust linear analysis and synthesis techniques

to guide the free choices available in the existing nonlinear methods. The following experiment
provides an excellent facility to explore this approach.

3.1.3 Description of the thrust-vectored aircraft experiment

We plan to investigate the problem of robust control of nonlinear systems, with primary application
in the area of supermaneuverability of high performance jet aircraft. The planned research is

centered around a case study of the control of a thrust-vectored aircraft, whose dynamics vary

substantially over the operating regions of interest. When hovering, the aircraft is moving slowly
and the dynamics are dominated by inertial forces and the complicated aerodynamic forces which

depend heavily on the distance from the ground. In forward flight, the distance from the ground

has tittle effect on the overall dynamics (excepting the dependence on air pressure variation), but

Coriolis and centrifugal forces begin to play a role. Due to this strongly nonlinear behavior, linear-

based design cannot be used to achieve high performance operation across all flight regimes.

The problem of nonlinear, robust control is a difficult one. It is unreasonable to expect that
theoretical breakthroughs in this area will come easily. With this in mind, we have decided to

focus on a specific problem in nonlinear robust control and use the results and intuition from that

problem to guide future research in this area. The control of a thrust vectored aircraft is intended

to push nonlinear, robust design and to yield results with important practical applications.
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Figure 14: Operating modes of an experimental ducted fan engine

A particular area of interest is in trajectory tracking, especially for trajectories which do not lle

in a single operating region. An example is the case where the ducted fan engine must transition

between hover and forward flight. Since the dynamics in these two modes is very different, the use
of nonlinear control is warranted. Furthermore, during the transition, the system is not operating

near an equilibrium point and hence a classical linear system does not capture the system dynamics.

Since our system is one which is hard to model exactly, due in part to the use of thrust-vectoring

as a control input, disturbances and model mismatch must be taken into account during the design

process. Also, it is unlikely that a detailed description of the complete system dynamics will be
available. Hence numerical identification of some system characteristics must be performed. Such

identification procedures only give approximate descriptions of the plant, and the effect of these

approximations must be taken into account in order to guarantee robust performance.
Because tools for robust linear control are well developed, we plan to search for controllers

which analyze well in a linear context and simulate well nonlinearly. The process of building such

controllers will help spotlight significant features of the problem. It will also serve as motivation

for extending the software tools currently available to incorporate important aspects of new design
methods which are developed. Examples might include provisions for generating parameterized

controllers and directly converting the controller descriptions into executable code for a real-time

control system.
An experimental setup is being built to study high performance pitch-axis control problems

using a ducted-fan engine. The flaps on the engine can be used to generate forward and reverse

thrust as well as up and down thrust. See Figure 14 for a schematic of the experimental engine in

specific operating modes. The engine will be mounted on a 3-degree-of-freedom arm which allows
horizontal and vertical translation as well as unrestricted pitch angle motion. Computer control of

the system will be achieved using a DSP-based real-time operating system under development at

Caltech. This system currently allows control algorithms written in the C programming language
to be executed at software selectable rates.

This research is motivated primarily by the nonlinearities that result from large maneuvers; such

as hover to forward flight transitions and post-stall recovery. Hence the control methodology em-

ployed in the experiments must be able to perform large maneuvers over non-equilibrium manifolds.
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Such methodologies willneed toincorporatenonlineartechniquesto drivethe largemaneuvers and

gain-schedulingto regulateand stabilizesteady-Righttrajectories;as wellasaddressinguncertainty

so that the controllerwillbe robustto modeling error.

3.2 Fixed Wing Free Flight

The goalofthework with pltch-axisthrust-vectoringisto move towardsa full-scaleremotely piloted

vehicle(RPV) forstudyinglargemaneuvers duringfreeflight.We plan todevelop a complete setup

forRighttestand verification.The importance ofsuch a setupliesinbeing ableto understand more

fullythe typesof nonlinearitiesthat resultfrom performinglargemaneuvers over a largeoperating

envelope. Such maneuvers includepost-stallrecoveryduring high angle-of-attack,approaches at

high angle-of-attack,and hover/forward Righttransitions.

3.2.1 Applicability of RPV research to full-scalevehicles

Development of Right controltechnologiesusing sub-scaleRPV systems has many benefits.The

criticalelements of model uncertaintyand disturbancesare includedin the development process.

There islow relativecost with respectto traditionalRight testand verificationprograms. The

flexiblesystem allowsmultipletechnologydevelopment programs. Using sub-scalevehiclesrequires

considerationof the applicabilityofresultsto full-scalevehicles.The vehiclemust be largeenough

to minimize scalingeffects(e.g. Reynolds number), provide manned vehiclecredibility,assure

adequate power plant for thrust-vectoring,and accommodate necessarysubsystems and instru-

mentation. Itmust alsobe small enough to minimize vehiclecost,assureeaseof launch/recovery,

and minimize reconfigurationturnaround time.Figure15 compares key vehicleand system require-

ments fortypicalsub-scaleand full-scalevehicles.

FULL SCALE

100 Hz

40 - 50 rad/sec

60- 100 deg/sec

Computer Frame Rate
Actuator Bandwidths

Actuator Rates

SUB-SCALE

REQUIRED

200 Hz > 1000 Hz

100 rad/sec 100 - 300 rad/sec

120 deg/sec _120 - 360 deg/sec

ACHIEVABLE

Figure 15: Vehicleand System Re_luirements

Of criticalimportance inthisprogram are vehicleagilitylimitationsas a resultofimproved sta-

bilityand robustness,and controleffectivenessduringenginestall.This requiresnovel and easily

reconfigurablecontrolarchitecturesto be considered.The adaptabilityof small,reliableengines

for thrust-vectoring,the use of thrust-vectoringforincreasingthe stableoperatingenvelope,and

the successfulunderstanding and exploitationof unique aerodynamic phenomena are key issues.

Many non-traditionalcontrolalternativeswillalsobe considered,such as leadingedge vortexma-

nipulation,dynamic liftexploitation,functionalcontrolredundancy with aerodynamic surfaces,

jettisonablewing extensions(agilecruisemissile),and the applicationofmicromachines.

The dominating performance issuesin thisresearchprogram include: power compensation

during approach fora highlybackslded,unstableaircraft,reconfigurablecontrols,ridequalityim-

provements,and stabilizationand performance forlargemaneuvers overlargeoperatingenvelopes.

This type ofhighlyacrobaticRightexploitstechnicaladvances in:

• DigitalRight controlsystems software/hardware/controllaws
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• l_eal-time telemetry and remote control

• High bandwidth actuators

• Compact flight control computers

• Temperature tolerant carbon materials

• Advanced composite materials, structures, and manufacturing

• Miniature sensors and instrumentation

• Computational design methodologies

• Unsteady flow test facilities and techniques

3.2.2 Description of the free flight experiment

We hope to develop and experimental system through collaboration with NASA and the Aerospace

Industry. We will focus on a statically unstable, high angle-of-attack vehicle. The candidate sub-
scale RPVs include the NASA F-18, NASA X-31, and a modular generic attack/fighter aircraft.

These vehicles will include a "drop-in" flight computer, sensor, and battery package. Typical

vehicle and system characteristics are pitch-axls instabilities in the range of 0.3-1 second time to

double amplitude for the sub-scale vehicle. Refer to Figure 16 for the typical RPV control system

structure.
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Figure 16: Typical RPV Control System Structure

Research on RPV vehicles will lead to a proof of principle for agile, high speed air vehicles:

improved combat supercrulse range, reduced vehicle signatures multiply force effectiveness, and

superior low speed/transitional maneuvering capability. This will provide a programmatic model

for future development and flight test efforts.
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3.3 Guidance, Navigation, and Control of Helicopters

3.3.1 Description of the experimental setup

This section provides a description of the goals of this research program with respect to autonomous

guidance, navigation, and control of helicopters. We plan t_ follow the experimental setup devel-

oped by George Mason University (GMU) for Steve Suddarth and the AFOSR FAME program.

The FAME experimental setup consists of an electric helicopter attached to a 3 degree-of-freedom

gimbaled "manipulator" at the end of a 3 degree-of-freedom arm. The arm is counter-balanced and

has fairly low inertia. The purpose of the arm is to provide a mechanical constraint on the motion

of the helicopter and facilitate measurement of the position and attitude of the helicopter. The

reachable volume of this arm is roughly a hemisphere with a six foot radius. The measurements

of the 6 degrees-of-freedom is via potentiometers. These measurements along with the forward

kinematics of the arm can be used to compute the position and attitude of the helicopter. Each

degree-of-freedom has a mechanical stop preventing full rotation. The interface to the helicopter
actuators and potentiometer measurements is through a microprocessor-based circuit board with a

serial interface. The host computer can request the potentiometer measurements and send actuator

commands to the helicopter through this serial interface. All actuator computations are performed

on the host computer. We outline several substantial problems with this setup and our proposed
solutions.

As mentioned above, the host computer interfaces with the microprocessor-based circuit board

through a serial interface. Using the FAME software version 2.1 we were bottle-necking the circuit

board at closed-loop bandwidths of around 5 Hz without any computation on the host. Output

computation would further reduce this bandwidth. Sampling period drift is quite difficult when

using a serial interface, and changing the input/output configuration of the system by augmenting

actuators/sensors is not straightforward. We solve this problem by using a general digital sig-

nal processing (DSP) system with a rich input/output (I/O) interface, including analog-to-digitai

(ADC) and digital-to-analog (DAC) conversion, pulse-width modulation (PWM) inputs and out-
puts, quadrature input decoding, and digital I/O. With this system we can interface to the heli-

copter actuators and sensors directly and easily achieve true real-time closed-loop bandwidths in

excess of 100 KHz (which is a few orders of magnitude faster than necessary for flight control).

In addition, it is very easy to modify the system for any I/O configuration which uses analog,

digital, or PWM signals or quadrature inputs. As an example we can easily incorporate a pilot

in the closed-loop system by feeding the PWM servo commands the pilot generates with an ltC

transmitter into our DSP system and processing them as standard PWM inputs. Sensor augmen-

tation for measuring rates, accelerations, etc. is easily accomplished by using ADCs. Generating

the controller code and selecting sampling rates is easily accomplished by either modifying the C
source code (for nonlinear systems) or using the standard linear system interface through Matlab
data files.

Since the FAME system uses potentiometers for measurements the full motion of the arm is

lost since no joint can freely rotate (due to mechanical stops). This means, for example, that

the helicopter can not fly circles or yaw continuously. This is a serious limitation when studying

trajectory tracking problems and limits this system to primarily studying control problems near

hover. We solve this problem by using slip rings and optical shaft encoders at all fully rotating

joints. This allows wires to be routed through a rotating joint and measurement of the joint angles

without discontinuities or dead band. The optical shaft encoders are easily processed through the
quadrature encoder inputs in the DSP system.

We feel that this experimental setup provides an ideal starting point for studying the problems
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associatedwith autonomous guidance,navigation,and controlof helicoptersin a researchlabora-

tory.Experiments outsidethe laboratoryin free-Rightcan be carriedout with the same helicopter

and DSP system with the additionof a non-contactpositionand attitudemeasurement system.

One such system isincludedin the budget. The experimentswe plan to perform are outlinedin

the followingsections.

3.3.2 Experiments near hover

The purpose of studying control of the helicopter near hover is to provide a stable autopUot platform

for performing larger maneuvers. To this end we will study a progression of experiments leading

to an autopilot which can robustly regulate a hover position and precisely track yaw attitude and

vertical position. The progression of experiments is:

• LPV identification near hover (quasi steady-state models)

• Regulation of hover

• Yaw attitude tracking

• Vertical position tracking

• Repetition of experiments with disturbances and modeling error

Initially experiments will focus on identifying linear parameter-varying (LPV) models near

hover. These models will be used along with state-space nonlinear models obtained via first princi-

ples [42, 43, 45, 67, 74]. Then controllers are designed through iterations involving simulation and

flight test in order to achieve good performance and robustness.

3.3.3 Experiments with large maneuvers

The "trainingarm" system can be used to study controlproblems involvinglargemaneuvers as

well.In particular,trajectorieslyingwithinthe 6 foothemisphericaloperatingvolume of the arm

areeasilystudied.Larger trajectoriescan be studiedin an ad hoc fashionby attachingthe arm to a

moving platform and designingcontrolsystems which Utrack"the moving platform.In thisway the

operatingvolume of the arm isgreatlyincreased,opening up a much largerrealm ofexperimental

problems which can be studied.The progressionofexperimentsis:

• LPV identification along a priori large maneuver trajectories

• Trajectory tracking

• Repetitionofexperimentswith disturbancesand modeling error

As with the experimentsnear hover,initiallyexperimentswillfocuson identifyingLPV models

along the largemaneuver trajectories.Additionalknowledge about the system dynamics can be

included as nonlinearperturbationson the LPV model. Controllerswillbe designed for these

systems sothatthey have robustperformancewhen linearizedand simulatewellnonlinearly.Choice

of the trajectoryis the key designissue. The amount of nonlinearityin the model willvary

dramaticallydepending on the types of trajectorieschosen. This willenable a progressionof

increasingly harder control problems, the results of which will drive the important theoretical
issues.
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3.3.4 Autonomous guidance and navigation during free-flight

All of the experimentsdiscussedthusfar have been mechanical restricted to a relatively small

operating volume since the "training arm" is being used. This arm not only restricts the operating
volume but also changes the dynamics and adds mechanical damping. It is, therefore, of interest to

replicate the experiments performed on the arm in a free-flight setting. The experimental setup for

free-flight involves the same helicopter and DSP system; but the measurement sensors will change.

The addition of off-board position and attitude measurements and rate gyros becomes a necessity.

There are commercially available systems which are small and light enough to be used. These

systems are included in the budget.

The autonomy of the control system is largely dependent in knowledge of the external environ-

ment. Either a priori knowledge or measurements must be available. Measurement of the external

environment is generally obtained through both active and passive imaging in the ultrasonic, in-

frared, and visual spectrum. Development of such a system is a long-term goal; but, initiai]y all
information about the external environment that is needed for autonomy will be made available to

the control system.

The chief advantage in studying problems in true free-flight lies in the freedom of trajectories

that can be obtained and the ability to select highly nonlinear maneuvers. Maneuvers which lie

far away from equilibrium points of the helicopter, such as coordinated turns and loops (which are

possible with I_C helicopters) are of particular interest.
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